Мій город

Як визначити, чи є вектори лінійно залежними. Лінійна залежність та лінійна незалежність системи векторів. Приклади розв'язання задач на лінійну залежність або лінійну незалежність векторів

Нехай L- довільний лінійний простір, a i Î L,- Його елементи (вектори).

Визначення 3.3.1.Вираз , де , - довільні речові числа, називається лінійною комбінацією векторів a 1 , a 2 ,…, a n.

Якщо вектор р = , то кажуть, що р розкладений за векторами a 1 , a 2 ,…, a n.

Визначення 3.3.2.Лінійна комбінація векторів називається нетривіальноюякщо серед чисел є хоча б одне відмінне від нуля. В іншому випадку, лінійна комбінація називається тривіальної.

Визначення 3.3.3 . Вектори a 1 , a 2 ,…, a nназиваються лінійно залежними, якщо існують їхня нетривіальна лінійна комбінація, така що

= 0 .

Визначення 3.3.4. Вектори a 1 ,a 2 ,..., a nназиваються лінійно незалежними, якщо рівність = 0 можливе лише у випадку, коли всі числа l 1, l 2,…, l nодночасно дорівнюють нулю.

Зазначимо, що будь-який ненульовий елемент a 1 можна як лінійно незалежну систему, бо рівність l a 1 = 0 можливо лише за умови l= 0.

Теорема 3.3.1.Необхідною та достатньою умовою лінійної залежності a 1 , a 2 ,…, a nє можливість розкладання, по крайнього заходу, однієї з цих елементів з інших.

Доказ. Необхідність. Нехай елементи a 1 , a 2 ,…, a nлінійно залежні. Це означає, що = 0 , причому хоча б одне з чисел l 1, l 2,…, l nвідмінно від нуля. Нехай для певності l 1 ¹ 0. Тоді

тобто елемент a 1 розкладений за елементами a 2 , a 3 , …, a n.

Достатність. Нехай елемент a 1 розкладений елементами a 2 , a 3 , …, a n, тобто a1 = . Тоді = 0 , отже, існує нетривіальна лінійна комбінація векторів a 1 , a 2 ,…, a n, рівна 0 тому вони є лінійно залежними .

Теорема 3.3.2. Якщо хоча б один із елементів a 1 , a 2 ,…, a nнульовий, ці вектори лінійно залежні.

Доказ . Нехай a n= 0 тоді = 0 що означає лінійну залежність зазначених елементів.

Теорема 3.3.3. Якщо серед n векторів будь-які p (p< n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Доказ. Нехай для визначеності елементи a 1, a 2, ..., a pлінійно залежні. Це означає, що існує така нетривіальна лінійна комбінація, що = 0 . Вказана рівність збережеться, якщо додати до обох частин елемент . Тоді + = 0 при цьому хоча б одне з чисел l 1, l 2,…, lpвідмінно від нуля. Отже, вектори a 1 , a 2 ,..., a nє лінійно залежними.

Наслідок 3.3.1.Якщо n елементів лінійно незалежні, то будь-які з них лінійно незалежні (k< n).

Теорема 3.3.4. Якщо вектори a 1 , a 2 ,…, a n - 1 лінійно незалежні, а елементи a 1 , a 2 ,…, a n - 1 , a n лінійно залежні, то вектор a n можна розкласти за векторами a 1 , a 2 ,…, a n - 1 .



Доказ.Оскільки за умовою a 1 , a 2 ,…, a n - 1 , a n лінійно залежні, то існує їхня нетривіальна лінійна комбінація = 0 , причому (інакше, виявляться лінійно залежними вектори a 1 , a 2 ,…, a n - 1). Але тоді вектор

що і потрібно було довести.

Введені нами лінійні операції над векторамидають можливість складати різні вирази для векторних величинта перетворювати їх за допомогою встановлених для цих операцій властивостей.

Виходячи із заданого набору векторів а 1, ..., а n, можна скласти вираз виду

де а 1, ..., а n – довільні дійсні числа. Цей вираз називають лінійною комбінацією векторіва 1, ..., а n. Числа α i , i = 1, n , являють собою коефіцієнти лінійної комбінації. Набір векторів називають ще системою векторів.

У зв'язку з введеним поняттям лінійної комбінації векторів виникає задача опису безлічі векторів, які можуть бути записані у вигляді лінійної комбінації даної системи векторів а 1, ..., а n. Крім того, закономірні питання про умови, за яких існує уявлення вектора у вигляді лінійної комбінації, та про єдиність такого уявлення.

Визначення 2.1.Вектори а 1 ..., а n називають лінійно залежнимиякщо існує такий набір коефіцієнтів α 1 , ... , α n , що

α 1 a 1 + ... + α n а n = 0 (2.2)

і при цьому хоча б один із цих коефіцієнтів ненульовий. Якщо зазначеного набору коефіцієнтів немає, то вектори називають лінійно незалежними.

Якщо α 1 = ... = α n = 0, то, очевидно, α 1 а 1 + ... + α n а n = 0. Маючи це на увазі, можемо сказати так: вектори а 1 , ..., а n лінійно незалежні, якщо з рівності (2.2) випливає, що всі коефіцієнти α 1 , ... , α n дорівнюють нулю.

Наступна теорема пояснює, чому нове поняття названо терміном "залежність" (або "незалежність") і дає простий критерій лінійної залежності.

Теорема 2.1.Щоб вектори а 1 , ..., а n , n > 1, були лінійно залежні, необхідно і достатньо, щоб один з них був лінійною комбінацією інших.

◄ Необхідність. Припустимо, що вектори а 1 ..., а n лінійно залежні. Згідно з визначенням 2.1 лінійної залежності, рівності (2.2) зліва є хоча б один ненульовий коефіцієнт, наприклад α 1 . Залишивши перший доданок у лівій частині рівності, перенесемо решту в праву частину, змінюючи, як завжди, у них знаки. Розділивши отриману рівність на α 1 отримаємо

a 1 =-α 2 /α 1 ⋅ a 2 - ... - α n /α 1 ⋅ a n

тобто. представлення вектора a 1 як лінійної комбінації інших векторів а 2 , ..., а n .

Достатність. Нехай, наприклад, перший вектор а можна представити у вигляді лінійної комбінації інших векторів: а 1 = β 2 а 2 + ... + β n а n . Перенісши всі складові з правої частини до лівої, отримаємо а 1 - β 2 а 2 - ... - β n а n = 0, тобто. лінійну комбінацію векторів а 1 , ..., а n з коефіцієнтами α 1 = 1, α 2 = - β 2 , ..., α n = - β n , рівну нульовий вектор.У цій лінійній комбінації не всі коефіцієнти дорівнюють нулю. Відповідно до визначення 2.1, вектори а 1 ..., а n лінійно залежні.

Визначення та критерій лінійної залежності сформульовані так, що мають на увазі наявність двох або більше векторів. Однак можна говорити про лінійну залежність одного вектора. Щоб реалізувати таку можливість, потрібно замість "вектори лінійно залежні" говорити "система векторів лінійно залежна". Неважко переконатися, що вираз "система з одного вектора лінійно залежна" означає, що цей єдиний вектор є нульовим (у лінійній комбінації є лише один коефіцієнт, і він не повинен дорівнювати нулю).

Поняття лінійної залежності має просту геометричну інтерпретацію. Цю інтерпретацію проясняють такі три твердження.

Теорема 2.2.Два вектори лінійно залежні тоді і лише тоді, коли вони колінеарні.

◄ Якщо вектори а і b лінійно залежні, один із них, наприклад а, виражається через інший, тобто. а = b для деякого дійсного числа λ. Відповідно до визначення 1.7 творивектора на число, вектори і b є колінеарними.

Нехай тепер вектори а та b колінеарні. Якщо вони обидва нульові, то очевидно, що вони лінійно залежні, тому що будь-яка їхня лінійна комбінація дорівнює нульовому вектору. Нехай один із цих векторів не дорівнює 0, наприклад вектор b. Позначимо через λ відношення довжин векторів: λ = |а|/|b|. Колінеарні вектори можуть бути односпрямованимиабо протилежно спрямованими. В останньому випадку у λ змінимо знак. Тоді, перевіряючи визначення 1.7, переконуємось, що а = b. Відповідно до теореми 2.1, вектори а та b лінійно залежні.

Зауваження 2.1.У разі двох векторів, враховуючи критерій лінійної залежності, доведену теорему можна переформулювати так: два вектори колінеарні тоді і лише тоді, коли один з них представляється як твір іншого на число. Це є зручним критерієм колінеарності двох векторів.

Теорема 2.3.Три вектори лінійно залежні тоді і лише тоді, коли вони компланарні.

◄ Якщо три вектори а, Ь, з лінійно залежними, то згідно з теоремою 2.1 один з них, наприклад а, є лінійною комбінацією інших: а = βb + γс. Сумісний початок векторів b і с у точці A. Тоді вектори βb, γс матимуть загальний початок у точці A і по правилу паралелограма їх сума,тобто. вектор а, буде вектор з початком A і кінцем, Що є вершиною паралелограма, побудованого на векторах-доданків. Отже, всі вектори лежать у одній площині, т. е. компланарны.

Нехай вектори а, b з компланарні. Якщо один із цих векторів є нульовим, то очевидно, що він буде лінійною комбінацією інших. Достатньо всі коефіцієнти лінійної комбінації взяти рівними нулю. Тому можна вважати, що всі три вектори не є нульовими. Сумісний початкуцих векторів у загальній точці O. Нехай їх кінцями будуть відповідні точки A, B, C (рис. 2.1). Через точку C проведемо прямі, паралельні прямим, що проходять через пари точок O, A та O, B. Позначивши точки перетину через A" і B", отримаємо паралелограм OA"CB", отже, OC" = OA" + OB" . OA" і ненульовий вектор а= OA колінеарні, а тому перший з них може бути отриманий множенням другого на дійсне число α:OA" = αOA . Аналогічно OB" = βOB , β ∈ R. В результаті отримуємо, що OC" = α OA + βOB , тобто вектор є лінійною комбінацією векторів а і b. Відповідно до теореми 2.1, вектори a, b, з є лінійно залежними.

Теорема 2.4.Будь-які чотири вектори лінійно залежні.

◄ Доказ проводимо за тією самою схемою, що й у теоремі 2.3. Розглянемо довільні чотири вектори a, b, с та d. Якщо один із чотирьох векторів є нульовим, або серед них є два колінеарні вектори, або три з чотирьох векторів компланарні, ці чотири вектори лінійно залежні. Наприклад, якщо вектори а і b колінеарні, то ми можемо скласти їх лінійну комбінацію αa + βb = 0 з ненульовими коефіцієнтами, а потім до цієї комбінації додати два вектори, взявши в якості коефіцієнтів нулі. Отримаємо рівну лінійну 0 комбінацію чотирьох векторів, в якій є ненульові коефіцієнти.

Таким чином, ми можемо вважати, що серед обраних чотирьох векторів немає нульових, жодні два не колінеарні і жодні три не є компланарними. Виберемо як їхній загальний початок точку О. Тоді кінцями векторів a, b, с, d будуть деякі точки A, B, С, D (рис. 2.2). Через точку D проведемо три площини, паралельні площин ОВС, OCA, OAB, і нехай A", B", С" - точки перетину цих площин з прямими OA, OB, ОС відповідно. Ми отримуємо паралелепіпед OA"C"B"C" B"DA", і вектори a, b, з лежать на його ребрах, що виходять з вершини О. Так як чотирикутник OC"DC" є паралелограмом, то OD = OC" + OC" . У свою чергу, відрізок ОС є діагоналлю паралелограма OA"C"B", тому OC" = OA" + OB" , а OD = OA" + OB" + OC" .

Залишається помітити, що пари векторів OA ≠ 0 і OA" , OB ≠ 0 і OB" , OC ≠ 0 і OC" колінеарні, і, отже, можна підібрати коефіцієнти α, β, γ так, що OA" = αOA , OB" = βOB і OC" = γOC. Остаточно отримуємо OD = αOA + βOB + γOC. Отже, вектор OD виражається через решту трьох векторів, а всі чотири вектори, згідно з теоремою 2.1, лінійно залежні.

Вектори, їх властивості та дії з ними

Векторні дії з векторами, лінійний векторний простір.

Вектори-впорядкована сукупність кінцевої кількості дійсних чисел.

Дії: 1.Умножение вектора на число: лямда*вектор х=(лямда*х 1, лямда*х 2 … лямда*х n).(3,4, 0, 7)*3=(9, 12,0,21)

2.Складання векторів (належать тому самому векторному простору) вектор х+вектор у = (х 1 +у 1, х 2 +у 2, … х n +у n ,)

3. Вектор 0=(0,0…0)--n E n – n-мірний (лінійний простір) вектор х +вектор 0 = вектор х

Теорема. Щоб система n векторів, n- мірного лінійного простору була лінійно залежною, необхідно і достатньо, щоб один з векторів були лінійною комбінацією іншим.

Теорема. Будь-яка сукупність n+ 1ого вектора n- мірного лінійного простору явл. лінійно залежною.

Додавання векторів, множення векторів на числа. Віднімання векторів.

Сумою двох векторів називається вектор, спрямований з початку вектора в кінець вектора за умови, що початок збігається з кінцем вектора. Якщо вектори задані їх розкладаннями по базисним ортам, при складанні векторів складаються їх відповідні координати.

Розглянемо це з прикладу декартової системи координат. Нехай

Покажемо, що

З малюнка 3 видно, що

Сума будь-якого кінцевого числа векторів може бути знайдена за правилом багатокутника (рис. 4): щоб побудувати суму кінцевого числа векторів, достатньо поєднати початок кожного наступного вектора з кінцем попереднього та побудувати вектор, що з'єднує початок першого вектора з кінцем останнього.

Властивості операції складання векторів:

У цих виразах m, n – числа.

Різницею векторів і називають вектор Друге доданок є вектором, протилежним вектору за напрямком, але рівним йому за довжиною.

Таким чином, операція віднімання векторів замінюється на операцію складання

Вектор, початок якого знаходиться на початку координат, а кінець - у точці А (x1, y1, z1) називають радіус-вектором точки А і позначають або просто. Оскільки його координати збігаються з координатами точки А, його розкладання по ортам має вигляд

Вектор, що має початок у точці А(x1, y1, z1) та кінець у точці B(x2, y2, z2), може бути записаний у вигляді

де r 2 - радіус-вектор точки; r 1 – радіус-вектор точки А.

Тому розкладання вектора по ортах має вигляд

Його довжина дорівнює відстані між точками А та В

УМНОЖЕННЯ

Так у разі плоского завдання добуток вектор на a = (ax; ay) на число b знаходиться за формулою

a · b = (ax · b; ay · b)

Приклад 1. Знайти добуток вектора a = (1; 2) на 3.

3 · a = (3 · 1; 3 · 2) = (3; 6)

Так, у разі просторового завдання добуток вектора a = (ax; ay; az) на число b знаходиться за формулою

a · b = (ax · b; ay · b; az · b)

Приклад 1. Знайти добуток вектора a = (1; 2; -5) на 2.

2 · a = (2 · 1; 2 · 2; 2 · (-5)) = (2; 4; -10)

Скалярний добуток векторів та де - кут між векторами та ; якщо або , то

З визначення скалярного твору випливає, що

де, наприклад, є величина проекції вектора напрям вектора .

Скалярний квадрат вектор:

Властивості скалярного твору:

Скалярний твір у координатах

Якщо то

Кут між векторами

Кут між векторами – кут між напрямками цих векторів (найменший кут).

Векторний твір (Векторний твір двох векторів)це псевдовектор, перпендикулярний до площини, побудованої по двох співмножниках, що є результатом бінарної операції «векторне множення» над векторами в тривимірному Евклідовому просторі. Твір не є ні комутативним, ні асоціативним (воно є антикомутативним) та відрізняється від скалярного твору векторів. У багатьох завданнях інженерії та фізики потрібно мати можливість будувати вектор, перпендикулярний двом наявним – векторний твір надає цю можливість. Векторний добуток корисний для «вимірювання» перпендикулярності векторів - довжина векторного добутку двох векторів дорівнює добутку їх довжин, якщо вони перпендикулярні, і зменшується до нуля, якщо вектори паралельні або антипаралельні.

Векторний твір визначено лише у тривимірному та семимірному просторах. Результат векторного твору, як і скалярного, залежить від метрики Евклідова простору.

На відміну від формули для обчислення за координатами векторів скалярного твору в тривимірній прямокутній системі координат, формула для векторного твору залежить від орієнтації прямокутної системи координат або, інакше, її «хіральності»

Колінеарність векторів.

Два ненульові (не рівні 0) вектори називаються колінеарними, якщо вони лежать на паралельних прямих або на одній прямій. Допустимо, але не рекомендується синонім - «паралельні» вектори. Колінеарні вектори можуть бути однаково спрямовані («сонаправлені») або протилежно спрямовані (в останньому випадку їх іноді називають «антиколлінеарними» або «антипаралельними»).

Змішане вироблення векторів( a, b, c)- скалярний добуток вектора a на векторний добуток векторів b і c:

(a, b, c) = a ⋅ (b × c)

іноді його називають потрійним скалярним твором векторів, мабуть через те, що результатом є скаляр (точніше - псевдоскаляр).

Геометричний зміст: Модуль змішаного твору чисельно дорівнює обсягу паралелепіпеда, утвореного векторами (a, b, c) .

Властивості

Змішане твір кососиметрично по відношенню до всіх своїх аргументів:т. е. перестановка будь-яких двох співмножників змінює знак твору. Звідси випливає, що Змішаний твір у правій декартовій системі координат (в ортонормованому базисі) дорівнює визначнику матриці, складеної з векторів:

Змішаний твір у лівій декартовій системі координат (в ортонормованому базисі) дорівнює визначнику матриці, складеної з векторів і взятому зі знаком "мінус":

Зокрема,

Якщо будь-які два вектори паралельні, то з будь-яким третім вектором вони утворюють змішане твір, що дорівнює нулю.

Якщо три вектори лінійно залежні (тобто компланарні, лежать у одній площині), їх змішаний твір дорівнює нулю.

Геометричний сенс - Змішане твір за абсолютним значенням дорівнює об'єму паралелепіпеда (див. малюнок), утвореного векторами і; знак залежить від того, чи ця трійка векторів правої або лівої.

Компланарність векторів.

Три вектори (або більше) називаються компланарними, якщо вони, будучи приведеними до загального початку, лежать в одній площині

Властивості компланарності

Якщо хоча б один із трьох векторів - нульовий, то три вектори теж вважаються компланарними.

Трійка векторів, що містить пару колінеарних векторів, є компланарною.

Змішане твір компланарних векторів. Це критерій компланарності трьох векторів.

Компланарні вектори – лінійно залежні. Це теж критерій компланарності.

У 3-мірному просторі 3 некомпланарні вектори утворюють базис

Лінійно залежні та лінійно незалежні вектори.

Лінійно залежні та незалежні системи векторів.Визначення. Система векторів називається лінійно залежноюякщо існує хоча б одна нетривіальна лінійна комбінація цих векторів, що дорівнює нульовому вектору. Інакше, тобто. якщо тільки тривіальна лінійна комбінація даних векторів дорівнює нульовому вектору, вектори називаються лінійно незалежними.

Теорема (критерій лінійної залежності). Для того щоб система векторів лінійного простору була лінійно залежною, необхідно і достатньо, щоб, принаймні, один із цих векторів був лінійною комбінацією інших.

1) Якщо серед векторів є хоча б один нульовий вектор, то вся система векторів є лінійно залежною.

Справді, якщо, наприклад, то, вважаючи, маємо нетривіальну лінійну комбінацію.

2) Якщо серед векторів деякі утворюють лінійно залежну систему, то вся система лінійно залежна.

Справді, нехай вектори , лінійно залежні. Отже, існує нетривіальна лінійна комбінація, що дорівнює нульовому вектору. Але тоді, гадаючи отримаємо також нетривіальну лінійну комбінацію , рівну нульовому вектору.

2. Базис та розмірність. Визначення. Система лінійно незалежних векторів векторного простору називається базисомцього простору, якщо будь-який вектор може бути представлений у вигляді лінійної комбінації векторів цієї системи, тобто. для кожного вектора існують дійсні числа такі, що має місце рівність Ця рівність називається розкладання векторапо базису , а числа називаються координатами вектора щодо базису(або у базисі) .

Теорема (про єдиність розкладання за базисом). Кожен вектор простору може бути розкладений за базисом єдиним чином, тобто. координати кожного вектора у базисі визначаються однозначно.

Головне значення базису у тому, що операції складання векторів і множення їх у числа при завданні базису перетворюються на відповідні операції над числами – координатами цих векторів. А саме, справедлива наступна

Теорема. При додаванні двох будь-яких векторів лінійного простору їх координати (щодо будь-якого базису простору) складаються; при множенні довільного вектора будь-яке число всі координати цього вектора множаться на .

Визначення -мірнимякщо в ньому існують лінійно незалежні вектори, а будь-які вектори вже є лінійно залежними. При цьому число називається розмірністюпростору.

Розмірність векторного простору, що складається з одного нульового вектора, приймається рівною нулю.

Розмірність простору зазвичай позначають символом.

Визначення. Векторний простір називається нескінченномірнимякщо в ньому існує будь-яке число лінійно незалежних векторів. В цьому випадку пишуть.

З'ясуємо зв'язок між поняттями базису та розмірності простору.

Теорема. Якщо – векторний простір розмірності, то будь-які лінійно незалежні вектори цього простору утворюють його базис.

Теорема. Якщо векторний простір має базис, що складається з векторів, то .


Подібна інформація.


Лінійна залежність та незалежність векторів

Визначення лінійно залежної та незалежної систем векторів

Визначення 22

Нехай маємо систему з n-векторів та маємо набір чисел
тоді

(11)

називається лінійною комбінацією даної системи векторів із цим набором коефіцієнтів.

Визначення 23

Система векторів
називається лінійно залежною, якщо існує такий набір коефіцієнтів
, З яких хоча б один не дорівнює нулю, що лінійна комбінація даної системи векторів з цим набором коефіцієнтів дорівнює нульовому вектору:

Нехай
тоді

Визначення 24 (через уявлення одного вектора системи у вигляді лінійної комбінації інших)

Система векторів
називається лінійно залежною, якщо хоча б один із векторів цієї системи можна у вигляді лінійної комбінації інших векторів цієї системи.

Твердження 3

Визначення 23 та 24 еквівалентні.

Визначення 25(через нульову лінійну комбінацію)

Система векторів
називається лінійно незалежною, якщо нульова лінійна комбінація цієї системи можлива лише за всіх
рівних нулю.

Визначення 26(через неможливість представлення одного вектора системи як лінійної комбінації інших)

Система векторів
називається лінійно незалежною, якщо не один із векторів цієї системи не можна уявити у вигляді лінійної комбінації інших векторів цієї системи.

Властивості лінійно залежної та незалежної систем векторів

Теорема 2 (нульовий вектор у системі векторів)

Якщо системі векторів є нульовий вектор, то система лінійно залежна.

 Нехай
тоді .

Отримаємо
, отже, за визначенням лінійно залежної системи векторів через нульову лінійну комбінацію (12) система лінійно залежна. 

Теорема 3 (Залежна підсистема в системі векторів)

Якщо системі векторів є лінійно залежна підсистема, те й система лінійно залежна.

 Нехай
- лінійно залежна підсистема
, серед яких хоча б одне не рівне нулю:

Отже, за визначенням 23 система лінійно залежна. 

Теорема 4

Будь-яка підсистема лінійно-незалежної системи лінійно незалежна.

 Від неприємного. Нехай система лінійно незалежна і у ній є лінійно залежна підсистема. Але тоді за теоремою 3 вся система буде також лінійно залежною. Протиріччя. Отже, підсистема лінійно незалежної системи може бути лінійно залежною. 

Геометричний сенс лінійної залежності та незалежності системи векторів

Теорема 5

Два вектори і лінійно залежні тоді і лише тоді, коли
.

Необхідність.

і - лінійно залежні
, що виконується умова
. Тоді
, тобто.
.

Достатність.

Лінійно залежні. 

Наслідок 5.1

Нульовий вектор колінеарен будь-якому вектору

Наслідок 5.2

Для того щоб два вектори були лінійно незалежні, необхідно і достатньо, щоб був не колінеарен .

Теорема 6

Для того, щоб система з трьох векторів була лінійно залежна, необхідно і достатньо, щоб ці вектори були компланарними. .

Необхідність.

- лінійно залежні, отже, один вектор можна у вигляді лінійної комбінації двох інших.

, (13)

де
і
. За правилом паралелограма є діагональ паралелограма зі сторонами
, але паралелограм – плоска фігура
компланарні
- теж компланарні.

Достатність.

- Компланарні. Докладемо три вектори до точки:

C

B`

– лінійно залежні 

Наслідок 6.1

Нульовий вектор компланарний будь-якій парі векторів.

Наслідок 6.2

Для того, щоб вектори
були лінійно незалежні і необхідно, щоб вони були не компланарні.

Наслідок 6.3

Будь-який вектор площини можна у вигляді лінійної комбінації будь-яких двох неколлінеарних векторів цієї ж площини.

Теорема 7

Будь-які чотири вектори у просторі лінійно залежні .

 Розглянемо 4 випадки:

Проведемо площину через вектори, потім площину через вектори та площину через вектори. Потім проведемо площини, що проходять через точку D, паралельні парам векторів; ; відповідно. По лініях перетину площин будуємо паралелепіпед OB 1 D 1 C 1 ABDC.

Розглянемо OB 1 D 1 C 1 – паралелограм за побудовою за правилом паралелограма
.

Розглянемо OADD 1 – паралелограм (із властивості паралелепіпеда)
тоді

EMBED Equation.3.

По теоремі 1
такі, що . Тоді
, та за визначенням 24 система векторів лінійно залежна. 

Наслідок 7.1

Сумою трьох некомпланарних векторів у просторі є вектор, що збігається з діагоналлю паралелепіпеда, побудованого на цих трьох векторах, прикладених до загального початку, причому початок вектора суми збігається із загальним початком цих трьох векторів.

Наслідок 7.2

Якщо в просторі взяти 3 некомпланарні вектори, то будь-який вектор цього простору можна розкласти в лінійну комбінацію даних трьох векторів.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Рішення.Шукаємо загальне рішення системи рівнянь

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гауса. Для цього запишемо цю однорідну систему за координатами:

Матриця системи

Дозволена система має вигляд: (r A = 2, n= 3). Система спільна та невизначена. Її загальне рішення ( x 2 - вільна змінна): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наявність ненульового приватного рішення, наприклад, говорить про те, що вектори a 1 , a 2 , a 3 лінійно залежні.

приклад 2.

З'ясувати, чи є дана система векторів лінійно залежною або лінійно незалежною:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Рішення.Розглянемо однорідну систему рівнянь a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

або в розгорнутому вигляді (за координатами)

Система однорідна. Якщо вона невироджена, вона має єдине рішення. Що стосується однорідної системи – нульове (тривіальне) рішення. Отже, у разі система векторів незалежна. Якщо ж система вироджена, вона має ненульові рішення і, отже, вона залежна.

Перевіряємо систему на виродженість:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невироджена і, отже, вектори a 1 , a 2 , a 3 лінійно незалежні.

Завдання.З'ясувати, чи є дана система векторів лінійно залежною або лінійно незалежною:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Довести, що система векторів буде лінійно залежною, якщо вона містить:

а) два рівні вектори;

б) два пропорційні вектори.

Сподобалась стаття? Поділіться з друзями!
Чи була ця стаття корисною?
Так
Ні
Дякую за ваш відгук!
Щось пішло не так і Ваш голос не було враховано.
Спасибі. Ваше повідомлення надіслано
Знайшли у тексті помилку?
Виділіть її, натисніть Ctrl+Enterі ми все виправимо!